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Abstract. We study the non-linear dynamics of a Penning trap plasma, including the effect of
the finite length and end curvature of the plasma column. A new cylindrical PIC code, called
KANDINSKY, has been implemented by using a new interpolation scheme. The principal idea is to
calculate the volume of each cell from a particle volume, in the same manner as it is done for the
cell charge. With this new method, the density is conserved along streamlines and artificial sources
of compressibility are avoided. The code has been validated with a reference Eulerian fluid code.
We compare the dynamics of three different models: a model with compression effects, the standard
Euler model and a geophysical fluid dynamics model. The results of our investigation prove that
Penning traps can really be used to simulate geophysical fluids.

INTRODUCTION

Malmberg-Penning traps are often characterized as a tool to simulate, in a plasma, the 2D
dynamics described by the Euler equations. However, it is well known that the classical
2D drift-Poisson model (mathematically equivalent to the 2D Euler model [1]) is unable
to capture the features of thek = 1 diocotron instability. In this approximation, there are
no unstable modes [2] and the continuum spectrum can give only algebraic growth [3];
instead, experiments show an exponential growth of the mode [4].

Recently, the research has focused on trying to resolve this contradiction between
theory and experiments. Finnet al. [5] were the first to explain the instability in terms
of effects due to the finite length and end curvature of the plasma column (compression
effects) and later Coppaet al.[6] improved this fluid model by modifying the expression
for the velocity field, by including temperature effects and by using the exact Green’s
function for the plasma length. Hilsabeck and O’Neil [7] pointed out that kinetic effects
might also be important in thek = 1 diocotron instability.

Interestingly, when compression effects are taken into account, the classical analogy
between the 2D drift-Poisson model and the Euler model for an incompressible and
inviscid fluid breaks down. Instead, a new analogy between non-neutral plasmas and
geophysical fluid dynamics (GFD) arises [5, 8], in which the plasma length plays the
role of the inverse of the fluid depth. This analogy is very important from the point of
view of performing geophysical experiments in Penning traps.

In the present contribution, we focus on a simplified version of the model presented in
Ref. [6], obtained by neglecting the temporal variation of the plasma length. As shown
in Ref. [6], this model is stillk = 1 unstable. The model is compared with the Euler
model and with theγ-plane approximation of the geophysical fluid dynamics.

We present simulations of the non-linear dynamics obtained with the cylindrical PIC
Code KANDINSKY, showing that GFD can be actually simulated in Penning traps.



PHYSICAL MODEL

A cylindrical Malmberg-Penning trap confining an electron plasma is considered in the
following. The trap consists of three electrodes. The central cylinder, which extends
betweenz=−Lc/2 andz= Lc/2, is grounded, while the two cylindrical end caps are at
a negative potential,−V. An uniform magnetic field provides radial confinement, while
the potential difference between the central electrode and the end caps provides axial
confinement.

In typical experiments, the electron cyclotron radius is much smaller than the typical
size of the device, allowing the guiding center approximation. Furthermore, the depen-
dence of the plasma properties along the axial direction can be simplified considerably
thanks to the rapid bouncing motion between the end caps. However, a correct descrip-
tion of the diocotron instability, especially for thek = 1 mode, requires one to include
the effect of finite length of the plasma in the axial direction and end curvature.

Following the approach in Refs. [5, 6], the particles are described by strings of
variable length, which change their axial length and, consequently, their density, if
they move radially due to theE×B drift. The effective axial length is calculated self-
consistently by solving the Poisson equation in the trap and assuming thermodynamic
equilibrium along the axial direction [9]. In normalized units, the model consists of the
following system of equations [6]:
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whereσ(r,θ, t) = eRw

ε0φ̂c0(0)
σ̂ is the density integrated along axial direction,V⊥ (r,θ, t) =

B0Rw

φ̂c0(0)
V̂⊥ is the plasma velocity in the plane(r,θ), L (r,θ, t) = L̂

Rw
is the effective length

of the plasma,Ψ(r,θ,z, t) = φ̂(r,θ,z,t)−φ̂c(r,θ,t)
φ̂c0(0)

is the correction to the potential in a trap

of finite length with respect to the value in a trap of infinite length,φeff (r,θ, t) is the

effective potential,α = Θ
φ̂c0(0)

is the electron temperature,t = φ̂c0(0)
B0R2

w
t̂ is the time andRw is

the wall radius. Hatted quantities are physical and have dimensions; the corresponding
normalized quantities share the same symbol but are not hatted. Subscriptsc and 0 label,
respectively, quantities evaluated in the central plane and unperturbed quantities. For
further details on the model and its derivation we refer to Refs. [6] and [10].

The model can be regarded as quasi-2D since only the potential in the trap depends
on the axial coordinate and can be reduced to a fully 2D model by neglecting the time
variation of the effective plasma length (in this case one does not need to solve the 3D
Poisson equation). In this approximation the new model becomes:





∂
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(ncL0) =−V⊥ ·∇⊥(ncL0)
V⊥ = êz×∇⊥ φeff
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⊥φc = nc

φeff = φc + αlog
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L0,r=0

(2)

where we used the fact thatσ = ncL0 andL0(r) is obtained from the initial equilibrium
solution.

Compression effects due to the finite length of the plasma are included in the first and
second equation of system (2). In the limit ofα = 0 andL0/L0,r=0 = 1−sr2 the model
described by Eqs. (2) reduces to the model proposed by Finnet al. (Eq. (38), Ref. [5]a).

In the following we will focus our attention on model (2), since it is simplified but
still able to capture the features of thek = 1 diocotron instability (as shown in Ref. [6]).
The spectrum of eigenvalues of model (2) is investigated in Ref. [11].

Our aim is to compare the dynamics of model (2) with the standard Euler model:
∂nc

∂t
=−V⊥ ·∇⊥nc

V⊥ = êz×∇⊥ φc

∇2
⊥φc = nc

(3)

and with the geophysical fluid dynamics (GFD) model [12]:
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V⊥ = êz×∇⊥ Ψ
∇2
⊥Ψ = ξ

(4)

whereξ is the vorticity,Ω is the rotation frequency,h is the height of the free surface of
the fluid relative to the bottom topography,Ψ is the streamfunction and(ξ+2Ω)/h is the
potential vorticity. Model (4) is obtained from the shallow-water equations in the limit of
small Rossby number, namely in the quasi-geostrophic approximation. As pointed out
in Ref. [5], withΩ = 0 the effective length of the plasmaL0 plays in model (2) the same
role played by 1/h in GFD. It is this analogy which leads to the possibility of simulating
experimentally geophysical fluid dynamics in a Penning trap.

In all the models, a quantity is advected by the velocity field: the density (vorticity)
nc for Euler, the line integrated densityncL0 for model (2) and the potential vorticity
for GFD. All these models have the same equation for the velocity field, but only for the
Euler case is the velocity field directly calculated from the quantity which is advected. In
model (2) the velocity field is calculated from the solution of the Poisson equation plus
an extra term which retains curvature and thermal effects, while in GFD the velocity
field is determined by the vorticityξ.

PIC CODE

The PIC code KANDINSKY has been developed based on a standard cylindrical PIC
code previously developed [13] by the authors in collaboration with Gianni Coppa



and Antonio D’Angola at the Politecnico di Torino. A cylindrical PIC code has many
advantages: very low viscosity; boundary conditions can be imposed exactly; the Fast
Fourier Transform (FFT) can be used to solve the Poisson equation resulting in an
improvement of the speed of the code. Nevertheless, it is well known that cylindrical
PIC codes can potentially suffer from a number of problems. Of particular importance
to the present study are the noise that typically arises in the center of the system, the non-
conservation of enstrophy, and the growth of the maximum value of the density during
simulations (inconsistent with incompressible flows). In the following subsections we
will show how to improve the cylindrical PIC scheme and to solve the problem.

The problem

In order to understand the origin of the problems that affect cylindrical PIC codes, we
will start with a simple exercise. Consider the 1D uniform cartesian grid of Fig. 1a and
consider one particle of unit charge located at positions A, B or C. It is possible to cal-
culate the density of each cell with the volume-weighted (Cloud-In-Cell) interpolation
scheme, which is the most common scheme adopted in PIC codes. When the particle
is in position A, it contributes only to the first cell and the density isρ1 = 1/∆x (∆x is
the grid spacing); when the particle is in position B, it is spread equally on the two cells
andρ1 = ρ2 = 1/(2∆x); when the particle is in position C, it contributes only to the
second cell andρ2 = 1/∆x. During the motion of the particle from A to C, the density
at the particle position fluctuates between 1/(2∆x) and 1/∆x but on average it is con-
served over long Lagrangian trajectories. Furthermore, this fluctuation is reduced when
summed over the number of particles per cell, and this source of noise is manageable.

We now repeat the same exercise for the uniform cylindrical grid of Fig. 1b. In general
a particle would contribute to two cells inθ and two cells inr direction, since the grid is
2D. In this specific example, we place A, B and C at the same azimuthal angle∆θ/2, so
there is only contribution to one cell inθ and the problem can be considered 1D. When
the particle is in position A, it contributes only to the first cell andρ1 = 2/(∆r2∆θ) (∆r
and∆θ are, respectively, the grid spacing inr andθ directions); when the particle is in
position B, its charge is spread equally between the two cells but the different volume of
the two cells leads to different densities,ρ1 = 1/(∆r2∆θ) andρ2 = 1/(3∆r2∆θ). When
the particle is in position C, it contributes only to the second cell andρ2 = 2/(3∆r2∆θ).
Again during the motion from A to C the density is transferred from the first cell to the
second, but in this case the total density of the particle does not remain constant, even on
average. In particular, the density decreases as the particle moves away from the center of
the system and this means that the CIC interpolation scheme, applied to a cylindrical grid
with uniform spacings∆r and∆θ, intrinsically violate the incompressibility condition.
This effect is partially compensated for on average because more particles are in the cell
of volumer∆r∆θ for larger.

This simple exercise points out that, when dealing with non-uniform cell volumes,
standard interpolation schemes produce fictitious compressibility.

We emphasize that this problem affects not only the cylindrical geometry but it occurs
whenever a grid of non-uniform volume is used.



FIGURE 1. a) Uniform cartesian grid (left); b) Uniform cylindrical grid (right).

The solution

According to [14], we define natural coordinates,~ω = (ζ,η) by mapping each cell of
the physical grid onto a unit square cell in the space of natural coordinates. Therefore, in
the space of natural coordinates the grid is uniform and cartesian. We define a shape
function s(~ω−~ωp) in order to interpolate from the particles to the grid and vice-
versa, normalized to

∫ ∫
sdζdη = 1 in the space of natural coordinates. Then, the shape

function in the physical space isS(x(~ω)−xp(~ωp)) = s(~ω−~ωp). When the grid and the
particles move with the fluid velocity and the interpolation scheme is consistent with
the choice of the grid, it can be shown that the natural coordinates are constants of the
motion [14]; in other words,s(~ω−~ωp) is constant during the Lagrangian phase in the
space of natural coordinates.

In order to solve the problem that we described in the previous paragraph, we in-
troduce the volume associated with each particle,Vp, in the same manner as it is done
for the particle chargeqp, and to calculate the volume of each cell we use the same
interpolation scheme adopted for the charge:

V(~ω) = ∑
p

Vpw(~ω−~ωp), (5)

wherew is the assignment function associated with the shape functions [15]. Then the
density is given by:

ρ(~ω) =
∑pqpw(~ω−~ωp)
∑pVpw(~ω−~ωp)

. (6)

This definition gives conservation ofρ along the Lagrangian trajectories of each particle,
sinceqp andVp are constant (determined at the beginning of each simulation) and each
particle is advected with constantw in the space of natural coordinates.

PIC summary

The KANDINSKY code consists of four parts: the loading of particles, the interpo-
lation scheme, the Poisson solver and the particle mover. The implementation of each



part of the code has been realized taking into account the characteristics of the physical
system to be simulated.

• Loading particles

In order to provide a precise, noiseless representation of the initial electron density
distribution, computational particles are allowed to have different charge. This can be
obtained by using the Mass Matrix formulation [16], according to which the particle
properties are calculated at the beginning of each simulation.

• Interpolation particle-grid

The density on the grid is calculated from the particles through the new interpola-
tion scheme defined in Eq. (6). The classic Cloud-In-Cell (CIC) method [15] is used
for the interpolation functions. Slightly different expressions are used when a particle
approaches the center or the boundary of the domain.

• Poisson solver

The Poisson equation can be solved with an efficient algorithm based upon the Fast
Fourier Transform inθ, assuming a piecewise constant density distribution inr [13]. A
set of decoupled differential equations is obtained for the Fourier componentsφ̃k(r):

1
r

d
dr

(
r
dφ̃k

dr

)
+

1
r2

(
sin∆θ

2
∆θ
2

)2

φ̃k = ñk(r). (7)

Eqs. (7) are solved using a finite difference scheme. Then the velocity field can be
calculated by using the central difference discretization.

• Interpolation grid-particle

Given the velocity field on the grid, the velocity on each particle can be calculated
using the same CIC interpolation scheme:

vp = ∑
c

vcw(~ωc−~ωp) . (8)

• Particle mover

Particles are moved solving the equations of motiondr p/dt = vp discretized with the
fourth-order Runge-Kutta method.

Figures 2 and 3 compare two simulations that only differ in using (6) (in the following
we will refer to this code as an Advanced PIC code or KANDINSKY code) or the usual
ρ = ∑pqpw/(r∆r∆θ) (Standard PIC code) for interpolating the density on the grid. This
run has been done for an initial hollow density profile with ak = 2 perturbation. It can
be noticed that very early some differences arise, in particular the Standard PIC code
develops some high density vortices (the maximum value of the density almost doubles
from the first to the last picture of Fig. 2) while this does not happen for the Advanced
PIC code (the maximum of the density remains constant). In the Standard PIC code,
we add an artificial compressibility to the system which is manifested by the localized
vortices with increasing density.

Furthermore, in the Standard PIC code enstrophy grows because of the contribution
of high density vortices, while we would expect enstrophy to be constant (as it is theoret-
ically for the Euler model) or to decrease slowly (because the density develops smaller



FIGURE 2. Standard PIC Code for ak = 2 instability in a hollow profile.

FIGURE 3. KANDINSKY Code for ak = 2 instability in a hollow profile.

and smaller length scales and at some point it is dissipated by numerical viscosity).
Indeed, for the Advanced PIC code, enstrophy is a slowly decreasing function of time.

VALIDATION TESTS

In this section we use the Euler model, which can be obtained from system (2) by taking
L0(r) =const, in order to compare our results with analytical results and with a reference
Eulerian fluid code. In all of our simulations we use an initial equilibrium density profile
of the form

nc0(r) =

 n0(0)

[
1−
(

r
rp

)2
]2[

1+(µ+2)
(

r
rp

)2
]

0≤ r ≤ rp

0 r > rp,

(9)

which depends on three parameters:n0(0), rp andµ. The last one is particularly im-
portant: forµ> 0 the profile is hollow (possible diocotron instability) where forµ< 0
the profile is monotonic (always stable). The simulations below are done withµ = 10,
rp = 0.59 andn0(0) is specified to give

∫ Rw
0 nc0(r)2πrdr = 1. The normalized tempera-

tureα is chosen equal to 0. According to [6] the equilibrium profile ofσ is obtained by
σ0 = nc0L0. The initial charge density is perturbed by modifying the particle charge as
q′p = qp [1+ εcos(kθ)], wherek is the mode number andε is the perturbation amplitude.
The system is discretized with aNr ×Nθ grid and usingNp particles. In the cases below



FIGURE 4. Vorticity (density) perturbation from a) Eulerian Fluid Code: linear phase (left); b)
KANDINSKY Code: linear phase (right).

we useNr = 150,Nθ = 128,Np = 558208, the average number of particles per cell is 49
and the time step isdt = 0.1.

• Test of accuracy

Three important conserved quantities are canonical angular momentum, propor-
tional to P =

∫ ∫
r2ncrdrdθ, electrostatic energy, proportional toH =

∫ ∫
ncφcrdrdθ,

and enstrophy, proportional toZ =
∫ ∫

n2
crdrdθ. (There are additional invariants∫ ∫

f (nc)rdrdθ, with f any function.)
The first two quantities are conserved well by the code (in a run withk = 2, ε = 0.01

andtmax= 600, not shown):δP/P = 0.6% andδH/H = 0.3%. The enstrophy is weakly
conserved due to filamentation, but still the code preserved it well:δZ/Z = 5%.

• Comparison with a Reference Eulerian Fluid Code

The code has been compared with a reference Eulerian fluid code in both the linear
and non-linear phase. Figs. 4a and 4b show the evolution of the perturbation of the
density att = 12.5. The initial perturbation has been chosen very small (ε = 0.001) in
order to remain in the linear phase. The agreement between the two codes is remarkable
and one can notice that the fluid code has more numerical viscosity than the PIC code.

Figs. 5a and 5b show the evolution of the density after a large initial perturbation
(ε = 0.25). The two codes agree very well, even in this non-linear case. It should be
noticed that the Eulerian code cannot follow with enough accuracy the region with steep
gradients outside the core region.

SIMULATIONS

In this section, we analyse the dynamics of models (2), (3) and (4). We compare
different runs withk = 1 and ε = 0.001. Model (2) can simulate GFD by using a
suitable equilibrium length profile, as it will be explained in the following. The shallow-
water equation for the potential vorticity can be simplified assuming small topography
variations or small variations of the Coriolis parameter. In the last case,(ξ + 2Ω)/h can
be approximated asξ + βr − γr2. For γ = 0 we have theβ-plane approximation, while
for β = 0 we have theγ-plane approximation [12]. The analogy between non-neutral
plasmas and GFD is established using the linear theory, whereβ−2γr can be identified
with nc0(r)L ′0(r)/L0(r) [5, 8]. Moreover, due to the fact thatL ′0(0) = 0, it follows that



FIGURE 5. Vorticity (density) from a) Eulerian Fluid Code: non-linear phase (left); b) KANDINSKY
Code: non-linear phase (right).

FIGURE 6. Evolution of the densitync according to the Euler model.

β = 0 and thus we are in the limit of theγ-plane approximation. Therefore, in order to
simulate theγ-plane approximation of GFD, we use model (2) withα = 0 and the length
profile obtained by solving

nc0(r)
L ′0(r)
L0(r)

=−2γr, (10)

with the initial density profile given by (9) andγ = sn0(0) (this is the value ofγ
obtained from (10) assuming a parabolic profileL0 = 1−sr2, a constant density profile
nc0 = n0(0) and in the limit of small radius, as shown in Ref. [8]). Model (4) is then also
simulated in the limit ofγ-plane approximation, using the sameγ = sn0(0). In all the
simulations below we use the curvatures= 0.5.

Figure 6 shows the evolution of the density for the Euler model after an initial
k = 1 perturbation. The model does not develop anyk = 1 instability and a slowly
growingk = 2 mode eventually dominates. Figure 7 shows the density at the same times
according to model (2). This model exhibits a strongk = 1 diocotron instability which
dominates thek = 2 mode seen in Fig. 6. The low-density core region is pushed off-axis
and the high-density region fills the center of the trap. At later times (not shown), the
low-density region is redistributed by filamentation or in big vortices. The same picture
can be drawn from Fig. 8, which shows the vorticity (density) evolution of the GFD
model. The density develops the same features in Figs. 7 and 8 with small differences at
later times due to non-linearities.

Clearly, the comparison of Figs. 6, 7 and 8 proves that a Penning trap can simulate
GFD and particularly its peculiar features not present in the classic Euler model.



FIGURE 7. Evolution of the densitync according to model (2).

FIGURE 8. Evolution of the vorticityξ according to the GFD model.
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